Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Ionic Liquid-Based Surfactants: Recent Advances in Their Syntheses, Solution Properties, and Applications

Texto completo
Autor(es):
El Seoud, Omar A. [1] ; Keppeler, Nicolas [1] ; Malek, Naved I. [2] ; Galgano, Paula D. [1]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Inst Chem, BR-05508000 Sao Paulo - Brazil
[2] Sardar Vallabhbhai Natl Inst Technol, Dept Appl Chem, Surat 395007, Gujarat - India
Número total de Afiliações: 2
Tipo de documento: Artigo de Revisão
Fonte: POLYMERS; v. 13, n. 7 APR 2021.
Citações Web of Science: 0
Resumo

The impetus for the expanding interest in ionic liquids (ILs) is their favorable properties and important applications. Ionic liquid-based surfactants (ILBSs) carry long-chain hydrophobic tails. Two or more molecules of ILBSs can be joined by covalent bonds leading, e.g., to gemini compounds (GILBSs). This review article focuses on aspects of the chemistry and applications of ILBSs and GILBSs, especially in the last ten years. Data on their adsorption at the interface and micelle formation are relevant for the applications of these surfactants. Therefore, we collected data for 152 ILBSs and 11 biamphiphilic compounds. The head ions of ILBSs are usually heterocyclic (imidazolium, pyridinium, pyrrolidinium, etc.). Most of these head-ions are also present in the reported 53 GILBSs. Where possible, we correlate the adsorption/micellar properties of the surfactants with their molecular structures, in particular, the number of carbon atoms present in the hydrocarbon ``tail{''}. The use of ILBSs as templates for the fabrication of mesoporous nanoparticles enables better control of particle porosity and size, hence increasing their usefulness. ILs and ILBSs form thermodynamically stable water/oil and oil/water microemulsions. These were employed as templates for (radical) polymerization reactions, where the monomer is the ``oil{''} component. The formed polymer nanoparticles can be further stabilized against aggregation by using a functionalized ILBS that is co-polymerized with the monomers. In addition to updating the literature on the subject, we hope that this review highlights the versatility and hence the potential applications of these classes of surfactants in several fields, including synthesis, catalysis, polymers, decontamination, and drug delivery. (AU)

Processo FAPESP: 14/22136-4 - Uso de solventes verdes e suas misturas na otimização de processos químicos
Beneficiário:Omar Abou El Seoud
Modalidade de apoio: Auxílio à Pesquisa - Temático