Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Solutions of higher order linear fuzzy differential equations with interactive fuzzy values

Texto completo
Autor(es):
Esmi, Estevao [1] ; Sanchez, Daniel Eduardo [1, 2] ; Wasques, Vinicius Francisco [1] ; de Barros, Laecio Carvalho [1]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, Dept Appl Math, IMECC, Campinas - Brazil
[2] Univ Austral Chile, Ctr Basic Sci Teaching Engn, Valdivia, Los Rios - Chile
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: FUZZY SETS AND SYSTEMS; v. 419, n. SI, p. 122-140, AUG 30 2021.
Citações Web of Science: 3
Resumo

In this study, we consider higher order linear differential equations with additional conditions (initial and/or boundary) given by interactive fuzzy numbers. The concept of interactivity arises from the notion of a joint possibility distribution (J). The proposed method for solving fuzzy differential equations is based on an extension of the classical solution via sup-J extension, which is a generalization of Zadeh \& rsquo;s extension principle. We prove that under certain conditions, the solution via Zadeh \& rsquo;s extension principle is equal to the convex hull of the solutions produced by the sup-J extension. We also show that the solutions based on the Fr \& eacute;chet derivatives of fuzzy functions coincide with the solutions obtained via the sup-J extension. All of the results are illustrated based on a 3rd order fuzzy boundary value problem. (c) 2020 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 16/26040-7 - Cálculo diferencial e integral baseado aritmética de números fuzzy interativos
Beneficiário:Estevão Esmi Laureano
Modalidade de apoio: Auxílio à Pesquisa - Regular