| Texto completo | |
| Autor(es): |
Número total de Autores: 3
|
| Afiliação do(s) autor(es): | [1] Univ Sao Paulo, Sao Paulo - Brazil
[2] Univ Fed Minas Gerais, Belo Horizonte, MG - Brazil
Número total de Afiliações: 2
|
| Tipo de documento: | Artigo Científico |
| Fonte: | BERNOULLI; v. 27, n. 3, p. 1745-1763, AUG 2021. |
| Citações Web of Science: | 0 |
| Resumo | |
We investigate a non-Markovian analogue of the Harris contact process in a finite connected graph G = (V, E): an individual is attached to each site x is an element of V, and it can be infected or healthy; the infection propagates to healthy neighbors just as in the usual contact process, according to independent exponential times with a fixed rate lambda > 0; however, the recovery times for an individual are given by the points of a renewal process attached to its timeline, whose waiting times have distribution mu such that mu(t, infinity) = t(-alpha)L(t), where 1/2 < alpha < 1 and L(center dot) is a slowly varying function; the renewal processes are assumed to be independent for different sites. We show that, starting with a single infected individual, if vertical bar V vertical bar < 2 + (2 alpha - 1)/{[}(1 - alpha)(2 - alpha)], then the infection does not survive for any lambda; and if vertical bar V vertical bar > 1/(1 - alpha), then, for every lambda, the infection has positive probability to survive. (AU) | |
| Processo FAPESP: | 17/10555-0 - Modelagem estocástica de sistemas interagentes |
| Beneficiário: | Fabio Prates Machado |
| Modalidade de apoio: | Auxílio à Pesquisa - Temático |
| Processo FAPESP: | 20/02636-3 - Modelos estocásticos em ambientes aleatórios |
| Beneficiário: | Pablo Almeida Gomes |
| Modalidade de apoio: | Bolsas no Brasil - Pós-Doutorado |