Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Soil mineralogical attributes estimated by color as accessed by proximal sensors and machine learning

Texto completo
Autor(es):
Baldo, Danilo [1] ; Marques Junior, Jose [1] ; Fernandes, Kathleen [1] ; de Almeida, Gabriela Mourao [1] ; Siqueira, Diego Silva [1]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] Sao Paulo State Univ FCAV UNESP, Fac Agr & Vet Sci, Res Grp CSME Soil Characterizat Specif Management, Dept Agr Sci, Jaboticabal, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: Soil Science Society of America Journal; v. 85, n. 6 SEP 2021.
Citações Web of Science: 0
Resumo

Detailed mapping is essential for land use and management planning. The mappings require a robust database. Costs and time associated with obtaining the database are high and, therefore, it is not always possbile to obtain it. Soil color is a pedoindicator attribute that can be easily characterized. This study aimed to use soil color, based on the RGB (red-green-blue) system and obtained by diffuse reflectance spectroscopy (DRS) and mobile proximal sensor (MPS) to estimate mineralogical attributes using machine learning techniques for the Western Plateau of Sao Paulo. A total of 600 samples were collected throughout the study area. The samples were analyzed by DRS and then photographed. The color data were obtained by the RGB system after analysis in a computer program. The samples were subjected to laboratory analysis to quantify the contents of crystalline and noncrystalline Fe, hematite, goethite, kaolinite, and gibbsite. The database was subjected to the random forest machine learning algorithm and geostatistics. The use of random forest allowed estimating soil mineralogical attributes based on the RGB system by DRS and MPS. Detailed maps of mineralogical attributes could be constructed using the RGB system by the DRS and MPS techniques. The MPS technique can be used to characterize soil color, reducing the costs associated with analysis and the time required for data collection. (AU)

Processo FAPESP: 17/05477-0 - Minerais caulinita e gibbsita na caracterização e mapeamento de estoque de C e P nos solos do Planalto Ocidental Paulista
Beneficiário:Kathleen Fernandes Braz
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 15/20692-0 - Caracterização da caulinita e gibbsita dos solos no Planalto Ocidental Paulista
Beneficiário:Kathleen Fernandes Braz
Modalidade de apoio: Bolsas no Brasil - Mestrado