Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Robust trend estimation for COVID-19 in Brazil

Texto completo
Autor(es):
Valente, Fernanda [1] ; Laurini, Marcio P. [1]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, FEARP, Ribeirao Preto, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: SPATIAL AND SPATIO-TEMPORAL EPIDEMIOLOGY; v. 39, NOV 2021.
Citações Web of Science: 0
Resumo

Estimating patterns of occurrence of cases and deaths related to the COVID-19 pandemic is a complex problem. The incidence of cases presents a great spatial and temporal heterogeneity, and the mechanisms of accounting for occurrences adopted by health departments induce a process of measurement error that alters the dependence structure of the process. In this work we propose methods to estimate the trend in the cases of COVID-19, controlling for the presence of measurement error. This decomposition is presented in Bayesian time series and spatio-temporal models for counting processes with latent components, and compared to the empirical analysis based on moving averages. We applied time series decompositions for the total number of deaths in Brazil and for the states of Sao Paulo and Amazonas, and a spatio-temporal analysis for all occurrences of deaths at the state level in Brazil, using two alternative specifications with global and regional components. (AU)

Processo FAPESP: 18/04654-9 - Séries temporais, ondaletas e dados de alta dimensão
Beneficiário:Pedro Alberto Morettin
Modalidade de apoio: Auxílio à Pesquisa - Temático