Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Application of Machine Learning Techniques and Spectrum Images of Vibration Orbits for Fault Classification of Rotating Machines

Texto completo
Autor(es):
Rodrigues, Clayton Eduardo [1] ; Nascimento Junior, Cairo Lucio [2] ; Rade, Domingos Alves [3]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Petr Brasileiro SA Petrobras, Sao Jose Dos Campos, SP - Brazil
[2] Inst Tecnol Aeronaut ITA, Div Elect Engn, Sao Jose Dos Campos, SP - Brazil
[3] Inst Tecnol Aeronaut ITA, Div Mech Engn, Sao Jose Dos Campos, SP - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF CONTROL AUTOMATION AND ELECTRICAL SYSTEMS; OCT 2021.
Citações Web of Science: 0
Resumo

A comparative analysis of machine learning techniques for fault diagnosis of rotating machines based on images of vibration spectra is presented. The feature extraction of different types of faults, including unbalance, misalignment, shaft crack, rotor-stator rubbing, and hydrodynamic instability, is performed by processing spectral images of vibration orbits acquired during the machine run-up. The classifiers are trained with simulated data and tested with both simulated and experimental data. The latter are obtained from laboratory measurements performed on an rotor-disc system supported on hydrodynamic bearings. To generate the simulated data, a numerical model is developed using the finite element method. Deep learning, ensemble and traditional classification methods are evaluated. The ability of the methods to generalize the image classification is evaluated based on their performance in classifying experimental test patterns that were not used during training. The results of this research indicate that, despite considerable computational cost, the method based on convolutional neural networks presents the best performance. (AU)

Processo FAPESP: 15/20363-6 - Identificação e controle tolerantes a falhas em sistemas rotativos
Beneficiário:Katia Lucchesi Cavalca Dedini
Modalidade de apoio: Auxílio à Pesquisa - Temático