Texto completo | |
Autor(es): |
Número total de Autores: 2
|
Afiliação do(s) autor(es): | [1] Univ Sao Paulo, Dept Math, ICMC, Caixa Postal 668, BR-13560970 Sao Carlos - Brazil
[2] Univ Fed Sao Carlos, Dept Math, CCET, Caixa Postal 676, BR-13565905 Sao Carlos - Brazil
Número total de Afiliações: 2
|
Tipo de documento: | Artigo Científico |
Fonte: | Colloquium Mathematicum; v. 167, n. 1 MAY 2021. |
Citações Web of Science: | 0 |
Resumo | |
We start a systematic study of invariant functions and equivariant mappings defined on Minkowski space under the action of the Lorentz group. We adapt some known results from the orthogonal group acting on Euclidean space to the Lorentz group acting on Minkowski space. In addition, an algorithm is given to compute generators of the ring of functions that are invariant under an important class of Lorentz subgroups, namely those generated by involutions, which is also useful to compute equivariants. Furthermore, general results on invariant subspaces of Minkowski space are presented, with a characterization of invariant lines and planes in the two lowest dimensions. (AU) | |
Processo FAPESP: | 19/07316-0 - Teoria de singularidades e aplicações a geometria diferencial, equações diferenciais e visão computacional |
Beneficiário: | Farid Tari |
Modalidade de apoio: | Auxílio à Pesquisa - Temático |