Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Nanoscale Wetting of Crystalline Cellulose

Texto completo
Autor(es):
Trentin, Lucas N. [1, 2] ; Pereira, Caroline S. [1, 2] ; Silveira, Rodrigo L. [1, 2, 3] ; Hill, Stefan [4] ; Sorieul, Mathias [4] ; Skaf, Munir S. [1, 2]
Número total de Autores: 6
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, Inst Chem, BR-13084862 Campinas, SP - Brazil
[2] Univ Estadual Campinas, Ctr Comp Engn & Sci, BR-13084862 Campinas, SP - Brazil
[3] Univ Fed Rio de Janeiro, Inst Chem, BR-21941909 Rio De Janeiro, RJ - Brazil
[4] Scion, Rotorua 3046 - New Zealand
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: Biomacromolecules; v. 22, n. 10, p. 4251-4261, OCT 11 2021.
Citações Web of Science: 0
Resumo

Cellulose possesses considerable potential for a wide range of sustainable applications. Nanocellulose-based material properties are primarily dependent on the structural surface characteristics of its crystalline planes. Experimental measurements of the affinity of crystalline nanocellulose surfaces with water are scarce and challenging to obtain. Therefore, the relative hydrophilicity of different cellulose allomorphs crystalline planes is often inferred from qualitative assessments of their surface and the exposition of polar groups to the solvent. This work investigates the relative hydrophilicity of cellulose surfaces using molecular dynamics simulations. The behavior of a water droplet laid on different crystal planes was used to determine their relative hydrophilicity. The water molecules fully spread onto highly hydrophilic surfaces. However, a water droplet placed on less hydrophilic surfaces equilibrates as an oblate spheroidal cap allowing the measurement of a contact angle. The results indicate that the I alpha (010), I alpha (110), I beta (010), and I beta (110) faces, as well as the faces of human-made celluloses II and III\_I (100), (110), (010), and (110) are all highly hydrophilic. They all have a contact angle value inferior to 11 degrees. Not unexpectedly, the I alpha (001) and I beta (100) surfaces are less hydrophilic with contact angles of 48 and 34 degrees, respectively. However, the I beta (110) plane, often referred to as a hydrophilic surface, forms a contact angle of about 32 degrees. The results are rationalized in terms of structure, exposure of hydroxyl groups to the solvent, and degree of cellulose-cellulose versus cellulose-water hydrogen bonds on each face. The simulations also show that the surface oxidation degree tunes the surface hydrophilicity in a nonlinear manner due to cooperative effects involving water-cellulose interactions. Our study helps us to understand how the degree of hydrophilicity of cellulose emerges from specific structural features of each crystalline surface. (AU)

Processo FAPESP: 19/17373-0 - Estudos computacionais de enzimas ativas em carboidratos e interações de celulose com compostos de matriz de paredes celulares de plantas
Beneficiário:Lucas Nascimento Trentin
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 13/08293-7 - CECC - Centro de Engenharia e Ciências Computacionais
Beneficiário:Munir Salomao Skaf
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 14/10448-1 - Aspectos moleculares da arquitetura de paredes celulares de plantas
Beneficiário:Rodrigo Leandro Silveira
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 15/25031-1 - Dinâmica molecular de enzimas modificadores de de carbohidratos para desconstrução e valorização de biomassa lignocelulósica
Beneficiário:Caroline Simões Pereira
Modalidade de apoio: Bolsas no Brasil - Doutorado