Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Missing Data Imputation in Internet of Things Gateways

Texto completo
Autor(es):
Franca, Cinthya M. [1] ; Couto, Rodrigo S. [1] ; Velloso, Pedro B. [1, 2]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Fed Rio de Janeiro UFRJ, Grp Teleinformat & Automacao GTA, PEE COPPE DEL Poli, BR-21941972 Rio De Janeiro, RJ - Brazil
[2] Sorbonne Univ, Lab Informat Paris 6 LIP6, F-75005 Paris - France
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: INFORMATION; v. 12, n. 10 OCT 2021.
Citações Web of Science: 0
Resumo

In an Internet of Things (IoT) environment, sensors collect and send data to application servers through IoT gateways. However, these data may be missing values due to networking problems or sensor malfunction, which reduces applications' reliability. This work proposes a mechanism to predict and impute missing data in IoT gateways to achieve greater autonomy at the network edge. These gateways typically have limited computing resources. Therefore, the missing data imputation methods must be simple and provide good results. Thus, this work presents two regression models based on neural networks to impute missing data in IoT gateways. In addition to the prediction quality, we analyzed both the execution time and the amount of memory used. We validated our models using six years of weather data from Rio de Janeiro, varying the missing data percentages. The results show that the neural network regression models perform better than the other imputation methods analyzed, based on the averages and repetition of previous values, for all missing data percentages. In addition, the neural network models present a short execution time and need less than 140 KiB of memory, which allows them to run on IoT gateways.</p> (AU)

Processo FAPESP: 15/24494-8 - Comunicação e processamento de big data em nuvens e névoas computacionais
Beneficiário:Nelson Luis Saldanha da Fonseca
Modalidade de apoio: Auxílio à Pesquisa - Temático