Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Spatial organization of connectivity in functional climate networks describing event synchrony of heavy precipitation

Texto completo
Autor(es):
Wolf, Frederik [1, 2] ; Donner, Reik V. [2, 3]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Humboldt Univ, Dept Phys, Berlin - Germany
[2] Potsdam Inst Climate Impact Res PIK, Leibniz Assoc, Res Domain IV Complex Sci, Potsdam - Germany
[3] Magdeburg Stendal Univ Appl Sci, Dept Water Environm Construct & Safety, Magdeburg - Germany
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: European Physical Journal-Special Topics; v. 230, n. 14-15, p. 3045-3063, OCT 2021.
Citações Web of Science: 1
Resumo

In the past years, there has been an increasing number of applications of functional climate networks to studying the spatio-temporal organization of heavy rainfall events or similar types of extreme behavior in some climate variable of interest. Nearly all existing studies have employed the concept of event synchronization (ES) to statistically measure similarity in the timing of events at different grid points. Recently, it has been pointed out that this measure can however lead to biases in the presence of events that are heavily clustered in time. Here, we present an analysis of the effects of event declustering on the resulting functional climate network properties describing spatio-temporal patterns of heavy rainfall events during the South American monsoon season based on ES and a conceptually similar method, event coincidence analysis (ECA). As examples for widely employed local (per-node) network characteristics of different type, we study the degree, local clustering coefficient and average link distance patterns, as well as their mutual interdependency, for three different values of the link density. Our results demonstrate that the link density can markedly affect the resulting spatial patterns. Specifically, we find the qualitative inversion of the degree pattern with rising link density in one of the studied settings. To our best knowledge, such crossover behavior has not been described before in event synchrony based networks. In addition, declustering relieves differences between ES and ECA based network properties in some measures while not in others. This underlines the need for a careful choice of the methodological settings in functional climate network studies of extreme events and associated interpretation of the obtained results, especially when higher-order network properties are considered. (AU)

Processo FAPESP: 11/50151-0 - Fenômenos dinâmicos em redes complexas: fundamentos e aplicações
Beneficiário:Elbert Einstein Nehrer Macau
Modalidade de apoio: Auxílio à Pesquisa - Temático