Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Image classification in frequency domain with 2SReLU: A second harmonics superposition activation function

Texto completo
Autor(es):
Watanabe, Thomio [1] ; Wolf, Denis F. [1]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Inst Math & Comp Sci, Sao Paulo - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: APPLIED SOFT COMPUTING; v. 112, NOV 2021.
Citações Web of Science: 0
Resumo

Deep Convolutional Neural Networks are able to identify complex patterns and perform tasks with super-human capabilities. However, besides the exceptional results, they are not completely understood and it is still impractical to hand-engineer similar solutions. In this work, an image classification Convolutional Neural Network and its building blocks are described from a frequency domain perspective. Some network layers have established counterparts in the frequency domain like the convolutional and pooling layers. We propose the 2SReLU layer, a novel non-linear activation function that preserves high frequency components in deep networks. A convolution-free network is presented, and it is demonstrated that in the frequency domain it is possible to achieve competitive results without using the computationally costly convolution operation. A source code implementation in PyTorch is provided at: https://gitlab.com/thomio/2srelu. (C) 2021 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 15/26293-0 - Rastreamento de múltiplos obstáculos em veículos autônomos com fusão de sensores
Beneficiário:Thomio Watanabe
Modalidade de apoio: Bolsas no Brasil - Doutorado