Novas Fronteiras em Teoria de Singularidades e em Geometria bi-Lipschitz de Germes...
Teoria das singularidades e geometria de subvariedades no espaço Minkowski
Texto completo | |
Autor(es): |
Andrade, Joao Henrique
;
do O, Joao Marcos
;
Ratzkin, Jesse
Número total de Autores: 3
|
Tipo de documento: | Artigo Científico |
Fonte: | INTERNATIONAL MATHEMATICS RESEARCH NOTICES; v. N/A, p. 21-pg., 2021-10-28. |
Resumo | |
In this paper, we consider the moduli space of complete, conformally flat metrics on a sphere with k punctures having constant positive Q-curvature and positive scalar curvature. Previous work has shown that such metrics admit an asymptotic expansion near each puncture, allowing one to define an asymptotic necksize of each singular point. We prove that any set in the moduli space such that the distances between distinct punctures and the asymptotic necksizes all remain bounded away from zero is sequentially compact, mirroring a theorem of D. Pollack about singular Yamabe metrics. Along the way, we define a radial Pohozaev invariant at each puncture and refine some a priori bounds of the conformal factor, which may be of independent interest. (AU) | |
Processo FAPESP: | 20/07566-3 - Propriedades qualitativas para EDPs de ordem alta e não-locais advindas da Geometria Diferencial |
Beneficiário: | João Henrique Santos de Andrade |
Modalidade de apoio: | Bolsas no Brasil - Pós-Doutorado |