Busca avançada
Ano de início
Entree


ON THE FIFTH WHITNEY CONE OF A COMPLEX ANALYTIC CURVE

Texto completo
Autor(es):
Giles Flores, Arturo ; Silva, Otoniel Nogueira ; Snoussi, Jawad
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF SINGULARITIES; v. 24, p. 23-pg., 2022-01-01.
Resumo

From a procedure to calculate the C-5-cone of a reduced complex analytic curve X subset of C-n at a singular point 0 is an element of X, we extract a collection of integers that we call auxiliary multiplicities and we prove they characterize the Lipschitz type of complex curve singularities. We then use them to improve the known bounds for the number of irreducible components of the C-5-cone. We finish by giving an example showing that in a Lipschitz equisingular family of curves the number of planes in the C-5-cone may not be constant. (AU)

Processo FAPESP: 20/10888-2 - Equisingularidade de famílias de superfícies com singularidades não isolada
Beneficiário:Otoniel Nogueira da Silva
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado