Busca avançada
Ano de início
Entree


SDBM: Supervised Decision Boundary Maps for Machine Learning Classifiers

Texto completo
Autor(es):
Oliveira, Artur Andre A. M. ; Espadoto, Mateus ; Hirata Jr, Roberto ; Telea, Alexandru C. ; Hurter, C ; Purchase, H ; Bouatouch, K
Número total de Autores: 7
Tipo de documento: Artigo Científico
Fonte: PROCEEDINGS OF THE 17TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 4; v. N/A, p. 11-pg., 2022-01-01.
Resumo

Understanding the decision boundaries of a machine learning classifier is key to gain insight on how classifiers work. Recently, a technique called Decision Boundary Map (DBM) was developed to enable the visualization of such boundaries by leveraging direct and inverse projections. However, DBM have scalability issues for creating fine-grained maps, and can generate results that are hard to interpret when the classification problem has many classes. In this paper we propose a new technique called Supervised Decision Boundary Maps (SDBM), which uses a supervised, GPU-accelerated projection technique that solves the original DBM shortcomings. We show through several experiments that SDBM generates results that are much easier to interpret when compared to DBM, is faster and easier to use, while still being generic enough to be used with any type of single-output classifier. (AU)

Processo FAPESP: 15/22308-2 - Representações intermediárias em Ciência Computacional para descoberta de conhecimento
Beneficiário:Roberto Marcondes Cesar Junior
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 17/25835-9 - Interpretação de imagens e de modelos de aprendizado profundos
Beneficiário:Nina Sumiko Tomita Hirata
Modalidade de apoio: Auxílio à Pesquisa - Parceria para Inovação Tecnológica - PITE