Busca avançada
Ano de início
Entree


Combined predictive and descriptive tests for extreme rainfall probability distribution selection

Texto completo
Autor(es):
Ballarin, Andre S. ; Calixto, Kalyl G. ; Anache, Jamil A. A. ; Wendland, Edson
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES; v. 67, n. 7, p. 11-pg., 2022-05-07.
Resumo

The popular approach to select a suitable distribution to characterize extreme rainfall events relies on the assessment of its descriptive performance. This study examines an alternative approach to this task that evaluates, in addition to the descriptive performance of the models, their performance in estimating out-of-sample events (predictive performance). With a numerical experiment and a study case in Sao Paulo state, Brazil, we evaluated the adequacy of seven probability distributions widely used in hydrological analysis to characterize extreme events in the region and compared the selection process of both popular and altenative frameworks. The results indicate that (1) the popular approach is not capable of selecting distributions with good predictive performance and (2) combining different predictive and descriptive tests can improve the reliability of extreme event prediction. The proposed framework allowed the assessment of model suitability from a regional perspective, identifying the Generalized Extreme Value (GEV) distribution as the most adequate to characterize extreme rainfall events in the region. (AU)

Processo FAPESP: 15/03806-1 - Disponibilidade hídrica e riscos de contaminação em áreas de afloramento do Sistema Aquífero Guarani
Beneficiário:Edson Cezar Wendland
Modalidade de apoio: Auxílio à Pesquisa - Programa BIOEN - Temático
Processo FAPESP: 20/08140-0 - Eventos extremos em um contexto de mudanças climáticas: caracterização baseada em modelos climáticos e não estacionariedade
Beneficiário:André Simões Ballarin
Modalidade de apoio: Bolsas no Brasil - Doutorado