Busca avançada
Ano de início
Entree


A Systematic Literature Review on Distributed Machine Learning in Edge Computing

Texto completo
Autor(es):
Poncinelli Filho, Carlos ; Marques Jr, Elias ; Chang, Victor ; dos Santos, Leonardo ; Bernardini, Flavia ; Pires, Paulo F. ; Ochi, Luiz ; Delicato, Flavia C.
Número total de Autores: 8
Tipo de documento: Artigo Científico
Fonte: SENSORS; v. 22, n. 7, p. 36-pg., 2022-04-01.
Resumo

Distributed edge intelligence is a disruptive research area that enables the execution of machine learning and deep learning (ML/DL) algorithms close to where data are generated. Since edge devices are more limited and heterogeneous than typical cloud devices, many hindrances have to be overcome to fully extract the potential benefits of such an approach (such as data-in-motion analytics). In this paper, we investigate the challenges of running ML/DL on edge devices in a distributed way, paying special attention to how techniques are adapted or designed to execute on these restricted devices. The techniques under discussion pervade the processes of caching, training, inference, and offloading on edge devices. We also explore the benefits and drawbacks of these strategies. (AU)

Processo FAPESP: 15/24144-7 - Tecnologias e soluções para habilitar o paradigma de nuvens de coisas
Beneficiário:José Neuman de Souza
Modalidade de apoio: Auxílio à Pesquisa - Temático