Busca avançada
Ano de início
Entree


Meta-features for meta-learning

Texto completo
Autor(es):
Rivolli, Adriano ; Garcia, Luis P. F. ; Soares, Carlos ; Vanschoren, Joaquin ; de Carvalho, Andre C. P. L. F.
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: KNOWLEDGE-BASED SYSTEMS; v. 240, p. 21-pg., 2022-03-15.
Resumo

Meta-learning is increasingly used to support the recommendation of machine learning algorithms and their configurations. These recommendations are made based on meta-data, consisting of performance evaluations of algorithms and characterizations on prior datasets. These characterizations, also called meta-features, describe properties of the data which are predictive for the performance of machine learning algorithms trained on them. Unfortunately, despite being used in many studies, meta-features are not uniformly described, organized and computed, making many empirical studies irreproducible and hard to compare. This paper aims to deal with this by systematizing and standardizing data characterization measures for classification datasets used in meta-learning. Moreover, it presents an extensive list of meta-features and characterization tools, which can be used as a guide for new practitioners. By identifying particularities and subtle issues related to the characterization measures, this survey points out possible future directions that the development of meta-features for meta-learning can assume. (C) 2022 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:Francisco Louzada Neto
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 16/18615-0 - Aprendizado de máquina avançado
Beneficiário:André Carlos Ponce de Leon Ferreira de Carvalho
Modalidade de apoio: Auxílio à Pesquisa - Parceria para Inovação Tecnológica - PITE