Busca avançada
Ano de início
Entree


Thresholding process on the dissimilarities between probability models for change detection on remote sensing data

Texto completo
Autor(es):
Godoy, Luiz Gustavo Rodrigues ; Negri, Rogerio Galante ; de Jesus Amore, Diogo
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF APPLIED REMOTE SENSING; v. 16, n. 1, p. 16-pg., 2022-01-01.
Resumo

Change detection comprises a very important application in environmental studies involving multitemporal data obtained by remote sensing. Developing more accurate change detection methods is an ongoing challenge. Our study presents a new, unsupervised change detection method based on the concepts of stochastic distances and thresholding. To prove the effectiveness of the method, a study was carried out involving a region in southeastern Brazil, from 1999 to 2018, which underwent a high rate of environmental degradation caused by urban, industrial, and sand mining expansion. In this investigation, images obtained by thematic mapper and operational land imager sensors aboard the Landsat-5 and -8 satellites were used. Comparisons with the change vector analysis (CVA) method are included in the analyses. Results showed that the proposed method is capable of providing more accurate results in relation to the CVA method, after adequate parameterization, providing more realistic mappings with greater precision. (C) 2022 Society of Photo-Optical Instrumentation Engineers (SPIE) (AU)

Processo FAPESP: 18/01033-3 - Investigação e Desenvolvimento de Algoritmos para Detecção de Mudança em Imagens de Sensoriamento Remoto
Beneficiário:Rogério Galante Negri
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 21/01305-6 - Avanços teóricos em detecção de anomalias e construção de sistemas de monitoramento ambiental
Beneficiário:Rogério Galante Negri
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 18/25806-1 - Análise sobre os impactos da mineração no Vale do Paraíba com apoio de imagens de sensoriamento remoto e técnicas não-supervisionadas de detecção de mudanças
Beneficiário:Luiz Gustavo Rodrigues Godoy
Modalidade de apoio: Bolsas no Brasil - Iniciação Científica