Busca avançada
Ano de início
Entree


THE LOCAL CYCLICITY PROBLEM: MELNIKOV METHOD USING LYAPUNOV CONSTANTS

Texto completo
Autor(es):
Gouveia, Luiz F. S. ; Torregrosa, Joan
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY; v. N/A, p. 20-pg., 2022-04-19.
Resumo

In 1991, Chicone and Jacobs showed the equivalence between the computation of the first-order Taylor developments of the Lyapunov constants and the developments of the first Melnikov function near a non-degenerate monodromic equilibrium point, in the study of limit cycles of small-amplitude bifurcating from a quadratic centre. We show that their proof is also valid for polynomial vector fields of any degree. This equivalence is used to provide a new lower bound for the local cyclicity of degree six polynomial vector fields, so M(6) >= 44. Moreover, we extend this equivalence to the piecewise polynomial class. Finally, we prove that M-p(c)(4) >= 43 and M-p(c)(5) >= 65. (AU)

Processo FAPESP: 20/04717-0 - Sistemas dinâmicos com simetrias e equações diferenciais implícitas
Beneficiário:Luiz Fernando da Silva Gouveia
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado