Busca avançada
Ano de início
Entree


Weyl-Einstein structures on conformal solvmanifolds

Texto completo
Autor(es):
del Barco, Viviana ; Moroianu, Andrei ; Schichl, Arthur
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: Geometriae Dedicata; v. 217, n. 1, p. 23-pg., 2023-02-01.
Resumo

A conformal Lie group is a conformal manifold (M, c) such that M has a Lie group structure and c is the conformal structure defined by a left-invariant metric g on M. We study Weyl-Einstein structures on conformal solvable Lie groups and on their compact quotients. In the compact case, we show that every conformal solvmanifold carrying a Weyl-Einstein structure is Einstein. We also show that there are no left-invariant Weyl-Einstein structures on non-abelian nilpotent conformal Lie groups, and classify them on conformal solvable Lie groups in the almost abelian case. Furthermore, we determine the precise list (up to automorphisms) of left-invariant metrics on simply connected solvable Lie groups of dimension 3 carrying left-invariant Weyl-Einstein structures. (AU)

Processo FAPESP: 21/09197-8 - Métricas invariantes especiais em grupos de Lie e seus quocientes compactos
Beneficiário:Viviana Jorgelina Del Barco
Modalidade de apoio: Auxílio à Pesquisa - Regular