| Texto completo | |
| Autor(es): |
Raquel, Gabriela C.
;
Conceicao, Katiane S.
;
Prates, Marcos O.
;
Andrade, Marinho G.
Número total de Autores: 4
|
| Tipo de documento: | Artigo Científico |
| Fonte: | JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION; v. 91, n. 12, p. 18-pg., 2021-03-10. |
| Resumo | |
In this paper, we present an extension of the Poisson Zero-Modified model with Normal and Generalized Log-Gamma random effects. The random effect induces correlation and accommodate the intrinsic variability of each individual. The Generalized Log-Gamma effect is a generalized Normal effect and can be used in atypical situations where the Normal effect is not appropriate. In particular, the mixed Zero-Modified Poisson model allows us to deal with longitudinal count data, without requiring any previous knowledge about data characteristics, mainly to the number of zero observations (zero-inflated or zero-deflated). We consider the maximum likelihood approach to estimate the model parameters. A simulation study is presented to evaluate the estimators' performance. A real data set referring to the number of notification of infant deaths in the municipalities of the state of Bahia/Brazil is analyzed. The results revealed the Generalized Log-Gamma effect seems to be more appropriate to model this longitudinal data set. (AU) | |
| Processo FAPESP: | 19/22412-5 - Mútiplos pontos de modificação em modelos para dados discretos |
| Beneficiário: | Katiane Silva Conceição |
| Modalidade de apoio: | Bolsas no Exterior - Pesquisa |
| Processo FAPESP: | 19/21766-8 - Modelos para séries temporais com dados discretos |
| Beneficiário: | Marinho Gomes de Andrade Filho |
| Modalidade de apoio: | Bolsas no Exterior - Pesquisa |