Busca avançada
Ano de início
Entree


Model for Semantic Base Structuring of Digital Data to Support Agricultural Management

Texto completo
Autor(es):
Neves, Ricardo A. ; Cruvinel, Paulo E. ; IEEE
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: 2020 IEEE 14TH INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING (ICSC 2020); v. N/A, p. 4-pg., 2020-01-01.
Resumo

This article presents a semantic model for structuring digital databases to function in a cloud environment and connect to data sources originating from Big Data. The work examines the process of receiving structured, semi-structured and unstructured data for use in agricultural risk management. It is conceived as an architecture that combines Data Mart, Data Warehouse (NoSQL), and Data Lake resources to support decision making, through knowledge discovery and applies algorithms for data mining by machine learning resources. The configuration presented addresses scenarios involving agricultural data, obtained from sensors operating in multiple modes. (AU)

Processo FAPESP: 17/19350-2 - Ferramenta digital avançada para o gerenciamento de riscos agrícolas
Beneficiário:Paulo Estevão Cruvinel
Modalidade de apoio: Auxílio à Pesquisa - Parceria para Inovação Tecnológica - PITE