Busca avançada
Ano de início
Entree


Markov Decision Processes Specified by Probabilistic Logic Programming: Representation and Solution

Texto completo
Autor(es):
Bueno, Thiago P. ; Maua, Denis D. ; de Barros, Leliane N. ; Cozman, Fabio G. ; IEEE
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: PROCEEDINGS OF 2016 5TH BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS 2016); v. N/A, p. 6-pg., 2016-01-01.
Resumo

Probabilistic logic programming combines logic and probability, so as to obtain a rich modeling language. In this work, we extend PROBLOG, a popular probabilistic logic programming language, with new constructs that allow the representation of (infinite-horizon) Markov decision processes. This new language can represent relational statements, including symmetric and transitive definitions, an advantage over other planning domain languages such as RDDL. We show how to exploit the logic structure in the language to perform Value Iteration. Preliminary experiments demonstrate the effectiveness of our framework. (AU)

Processo FAPESP: 15/01587-0 - Armazenagem, modelagem e análise de sistemas dinâmicos para aplicações em e-Science
Beneficiário:João Eduardo Ferreira
Modalidade de apoio: Auxílio à Pesquisa - Programa eScience e Data Science - Temático
Processo FAPESP: 16/01055-1 - Aprendizagem de Modelos Probabilísticos Tratáveis e seu Uso na Classificação Multirrótulo
Beneficiário:Denis Deratani Mauá
Modalidade de apoio: Auxílio à Pesquisa - Regular