Busca avançada
Ano de início
Entree


Real-world-events data sifting through ultra-small labeled datasets and graph fusion

Texto completo
Autor(es):
Vega-Oliveros, Didier A. ; Nascimento, Jose ; Lavi, Bahram ; Rocha, Anderson
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: APPLIED SOFT COMPUTING; v. 132, p. 17-pg., 2023-01-01.
Resumo

The information on social media is vital, especially for events such as natural disasters or terrorist attacks, that might cause rapid growth of data sharing through social media networks. However, collecting and processing data of an event is a challenging task and essentially requires a great deal of data cleaning and filtering out what is relevant/irrelevant to the event. Data sifting task endeavors to identifying the related content to the depicted event data. We propose a learning strategy to dynamically learn complementary contributions from different data-driven features through a semisupervised graph-fusion technique. Our proposed method relies upon minimal training labeled data samples - ultra-small data learning. Learning through a small labeled set is also of particular interest to forensic investigators and medical researchers - concerning massive data labeling and minimizing energy-efficient computing to reduce redundancy and repetitions. We assess the effectiveness of the proposed semi-supervised method on five datasets from real-world events. Compared with prior-art (supervised and semi-supervised ones), experimental results show the proposed method achieves the best classification results and most efficient computational footprint. (c) 2022 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 17/12646-3 - Déjà vu: coerência temporal, espacial e de caracterização de dados heterogêneos para análise e interpretação de integridade
Beneficiário:Anderson de Rezende Rocha
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 20/02241-9 - Reconhecimento de padrões e detecção de subeventos de destaque em dados de fontes heterogêneas
Beneficiário:José Dorivaldo Nascimento Souza Júnior
Modalidade de apoio: Bolsas no Brasil - Doutorado Direto
Processo FAPESP: 19/26283-5 - Aprendendo pistas visuais da passagem do tempo
Beneficiário:Didier Augusto Vega Oliveros
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 18/05668-3 - Coerência espaço-temporal e de características a partir de dados heterogêneos
Beneficiário:Bahram Lavi Sefidgari
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado