Busca avançada
Ano de início
Entree


A Network Intrusion Detection System using Deep Learning against MQTT Attacks in IoT

Texto completo
Autor(es):
Mosaiyebzadeh, Fatemeh ; Araujo Rodriguez, Luis Gustavo ; Batista, Daniel Macedo ; Hirata Jr, R. ; Velazquez, R
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: 2021 IEEE LATIN-AMERICAN CONFERENCE ON COMMUNICATIONS (LATINCOM 2021); v. N/A, p. 6-pg., 2021-01-01.
Resumo

Cyber-attacks and threats are growing fast in the Internet of Things (IoT) infrastructure as applications in smart cities gain momentum. Usually, IoT devices communicate via machine-to-machine protocols such as Message Queuing Telemetry Transport (MQTT). Due to the heterogeneous structure in IoT and the absence of security by design methodologies, security mechanisms in environments with MQTT traffic are needed, and they can be deployed as Intrusion Detection Systems (IDS). This paper proposes a Deep Learning (DL) based Network IDS trained using a public dataset containing MQTT attacks. We assess the proposal using standard performance metrics such as accuracy, precision, recall, F1-score, and weighted average. When evaluating the performance of our DL-based Network IDS, it obtained, in average, 97.09% of accuracy and an F1-score equal to 98.33% in the detection of MQTT attacks. Another important contribution of our work is the sharing of the experiments on GitHub, which guarantees the reproducibility of the research. (AU)

Processo FAPESP: 15/24485-9 - Internet do futuro aplicada a cidades inteligentes
Beneficiário:Fabio Kon
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 18/22979-2 - IoT-SED: segurança e eficiência no transporte de dados na Internet das Coisas
Beneficiário:Daniel Macêdo Batista
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 18/23098-0 - MENTORED: da modelagem à experimentação - predizendo e detectando ataques DDoS e zero-day
Beneficiário:Michele Nogueira Lima
Modalidade de apoio: Auxílio à Pesquisa - Temático