Busca avançada
Ano de início
Entree


Vertical Asymptotics for Bridgeland Stability Conditions on 3-Folds

Texto completo
Autor(es):
Jardim, Marcos ; Maciocia, Antony ; Martinez, Cristian
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: INTERNATIONAL MATHEMATICS RESEARCH NOTICES; v. N/A, p. 53-pg., 2022-08-31.
Resumo

Let X be a smooth projective threefold of Picard number one for which the generalized Bogomolov-Gieseker inequality holds. We characterize the limit Bridgeland semistable objects at large volume in the vertical region of the geometric stability conditions associated to X in complete generality and provide examples of asymptotically semistable objects. In the case of the projective space and ch(beta) (E) = (-R, 0,D, 0), we prove that there are only a finite number of nested walls in the (alpha, s)-plane. Moreover, when R = 0 the only semistable objects in the outermost chamber are the 1-dimensional Gieseker semistable sheaves, and when beta = 0 there are no semistable objects in the innermost chamber. In both cases, the only limit semistable objects of the form E or E[1] (where E is a sheaf) that do not get destabilized until the innermost wall are precisely the (shifts of) instanton sheaves. (AU)

Processo FAPESP: 18/21391-1 - Teoria de calibre e geometria algébrica
Beneficiário:Marcos Benevenuto Jardim
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 20/06938-4 - Geometria de espaços de módulos de feixes através do cruzamento de paredes
Beneficiário:Cristian Mauricio Martinez Esparza
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado