| Texto completo | |
| Autor(es): |
de Sa, Nikolas Gomes
;
Valem, Lucas Pascotti
;
Guimaraes Pedronette, Daniel Carlos
;
Farinella, GM
;
Radeva, P
;
Braz, J
;
Bouatouch, K
Número total de Autores: 7
|
| Tipo de documento: | Artigo Científico |
| Fonte: | VISAPP: PROCEEDINGS OF THE 16TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS - VOL. 5: VISAPP; v. N/A, p. 9-pg., 2021-01-01. |
| Resumo | |
Accurately ranking the most relevant elements in a given scenario often represents a central challenge in many applications, composing the core of retrieval systems. Once ranking structures encode relevant similarity information, measuring how correlated are two rank results represents a fundamental task, with diversified applications. In this work, we propose a new rank correlation measure called Multi-Level Rank Correlation Measure (MLCM), which employs a novel approach based on a multi-level analysis for estimating the correlation between ranked lists. While traditional weighted measures assign more relevance to top positions, our proposed approach goes beyond by considering the position at different levels in the ranked lists. The effectiveness of the proposed measure was assessed in unsupervised and weakly supervised learning tasks for image retrieval. The experimental evaluation considered 6 correlation measures as baselines, 3 different image datasets, and multiple features. The results are competitive or, in most of the cases, superior to the baselines, achieving significant effectiveness gains. (AU) | |
| Processo FAPESP: | 17/25908-6 - Aprendizado fracamente supervisionado para análise de vídeos no domínio comprimido em tarefas de recuperação e classificação para alertas visuais |
| Beneficiário: | João Paulo Papa |
| Modalidade de apoio: | Auxílio à Pesquisa - Parceria para Inovação Tecnológica - PITE |
| Processo FAPESP: | 18/15597-6 - Aplicação e investigação de métodos de aprendizado não-supervisionado em tarefas de recuperação e classificação |
| Beneficiário: | Daniel Carlos Guimarães Pedronette |
| Modalidade de apoio: | Auxílio à Pesquisa - Jovens Pesquisadores - Fase 2 |
| Processo FAPESP: | 19/11104-8 - Uma análise comparativa de métricas de correlação de ranqueamento para aprendizado fracamente supervisionado |
| Beneficiário: | Nikolas Gomes de Sá |
| Modalidade de apoio: | Bolsas no Brasil - Iniciação Científica |