Busca avançada
Ano de início
Entree


Incorporating Instance Correlations in Multi-label Classification via Label-Space

Texto completo
Autor(es):
de Abreu, Iuri Bonna M. ; Mantovani, Rafael G. ; Cerri, Ricardo ; IEEE
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: 2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN); v. N/A, p. 8-pg., 2017-01-01.
Resumo

Multi-label classification is a machine learning task where instances can be classified into two or more labels simultaneously. In this task, there exist correlations between the instances belonging to same or similar sets of labels. This paper proposes the incorporation of instance correlations by modifying the multi-label datasets. We used the label-space to create new features, which represent these correlations. The original and modified datasets were used with different multi-label classification methods. Experiments have shown that better results can be obtained when instance correlations were incorporated in the classification tasks. All methods were evaluated with measures specifically designed for multi-label problems. (AU)

Processo FAPESP: 15/14300-1 - Classificação hierárquica de elementos transponíveis utilizando aprendizado de máquina
Beneficiário:Ricardo Cerri
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 12/23114-9 - Uso de meta-aprendizado para ajuste de parâmetros em problemas de classificação
Beneficiário:Rafael Gomes Mantovani
Modalidade de apoio: Bolsas no Brasil - Doutorado