Busca avançada
Ano de início
Entree


MaxDropoutV2: An Improved Method to Drop Out Neurons in Convolutional Neural Networks

Texto completo
Autor(es):
Goncalves dos Santos, Claudio Filipi ; Roder, Mateus ; Passos, Leandro Aparecido ; Papa, Joao Paulo ; Pinho, AJ ; Georgieva, P ; Teixeira, LF ; Sanchez, JA
Número total de Autores: 8
Tipo de documento: Artigo Científico
Fonte: PATTERN RECOGNITION AND IMAGE ANALYSIS (IBPRIA 2022); v. 13256, p. 12-pg., 2022-01-01.
Resumo

In the last decade, exponential data growth supplied the machine learning-based algorithms' capacity and enabled their usage in daily life activities. Additionally, such an improvement is partially explained due to the advent of deep learning techniques, i.e., stacks of simple architectures that end up in more complex models. Although both factors produce outstanding results, they also pose drawbacks regarding the learning process since training complex models denotes an expensive task and results are prone to overfit the training data. A supervised regularization technique called MaxDropout was recently proposed to tackle the latter, providing several improvements concerning traditional regularization approaches. In this paper, we present its improved version called MaxDropoutV2. Results considering two public datasets show that the model performs faster than the standard version and, in most cases, provides more accurate results. (AU)

Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:Francisco Louzada Neto
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 14/12236-1 - AnImaLS: Anotação de Imagem em Larga Escala: o que máquinas e especialistas podem aprender interagindo?
Beneficiário:Alexandre Xavier Falcão
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 19/07665-4 - Centro de Inteligência Artificial
Beneficiário:Fabio Gagliardi Cozman
Modalidade de apoio: Auxílio à Pesquisa - Programa eScience e Data Science - Centros de Pesquisa em Engenharia