Busca avançada
Ano de início
Entree


Images of multilinear graded polynomials on upper triangular matrix algebras

Texto completo
Autor(es):
Fagundes, Pedro ; Koshlukov, Plamen
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES; v. N/A, p. 26-pg., 2022-09-19.
Resumo

In this paper, we study the images of multilinear graded polynomials on the graded algebra of upper triangular matrices UTn. For positive integers q <= n, we classify these images on UTn endowed with a particular elementary Z(q)-grading. As a consequence, we obtain the images of multilinear graded polynomials on UTn with the natural Z(n)-grading. We apply this classification in order to give a new condition for a multilinear polynomial in terms of graded identities so that to obtain the traceless matrices in its image on the full matrix algebra. We also describe the images of multilinear polynomials on the graded algebras UT2 and UT3, for arbitrary gradings. We finish the paper by proving a similar result for the graded Jordan algebra UJ(2), and also for UJ(3) endowed with the natural elementary Z(3)-grading. (AU)

Processo FAPESP: 18/23690-6 - Estruturas, representações e aplicações de sistemas algébricos
Beneficiário:Ivan Chestakov
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 19/16994-1 - Álgebras que são soma de duas subálgebras PI
Beneficiário:Pedro Souza Fagundes
Modalidade de apoio: Bolsas no Brasil - Doutorado