Busca avançada
Ano de início
Entree


3D Printed Cartilage-Like Tissue Constructs with Spatially Controlled Mechanical Properties

Texto completo
Autor(es):
de Melo, Bruna A. G. ; Jodat, Yasamin A. ; Mehrotra, Shreya ; Calabrese, Michelle A. ; Kamperman, Tom ; Mandal, Biman B. ; Santana, Maria H. A. ; Alsberg, Eben ; Leijten, Jeroen ; Shin, Su Ryon
Número total de Autores: 10
Tipo de documento: Artigo Científico
Fonte: ADVANCED FUNCTIONAL MATERIALS; v. 29, n. 51, p. 13-pg., 2019-10-21.
Resumo

Developing biomimetic cartilaginous tissues that support locomotion while maintaining chondrogenic behavior is a major challenge in the tissue engineering field. Specifically, while locomotive forces demand tissues with strong mechanical properties, chondrogenesis requires a soft microenvironment. To address this challenge, 3D cartilage-like tissue is fabricated using two biomaterials with different mechanical properties: a hard biomaterial to reflect the macromechanical properties of native cartilage, and a soft biomaterial to create a chondrogenic microenvironment. To this end, a bath composed of an interpenetrating polymer network (IPN) of polyethylene glycol (PEG) and alginate hydrogel (MPa order compressive modulus) is developed as an extracellular matrix (ECM) with self-healing properties. Within this bath supplemented with thrombin, human mesenchymal stem cell (hMSC) spheroids embedded in fibrinogen are 3D bioprinted, creating a soft microenvironment composed of fibrin (kPa order compressive modulus) that simulate cartilage's pericellular matrix and allow a fast diffusion of nutrients. The bioprinted hMSC spheroids present high viability and chondrogenic-like behavior without adversely affecting the macromechanical properties of the tissue. Therefore, the ability to locally bioprint a soft and cell stimulating biomaterial inside of a mechanically robust hydrogel is demonstrated, thereby uncoupling the micro- and macromechanical properties of the 3D printed tissues such as cartilage. (AU)

Processo FAPESP: 17/02913-4 - Microfluídica para cultura 3D de h-AdMSCs em ácido hialurônico livre ou estruturado em esponjas: quimiotaxia e quimiocinese em resposta a gradientes de fatores de crescimento de L-PRP
Beneficiário:Bruna Alice Gomes de Melo
Modalidade de apoio: Bolsas no Exterior - Estágio de Pesquisa - Doutorado