Busca avançada
Ano de início
Entree


Deep Learning-aided Parkinson's Disease Diagnosis from Handwritten Dynamics

Texto completo
Autor(es):
Pereira, Clayton R. ; Weber, Silke A. T. ; Hook, Christian ; Rosa, Gustavo H. ; Papa, Joao ; IEEE
Número total de Autores: 6
Tipo de documento: Artigo Científico
Fonte: 2016 29TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI); v. N/A, p. 7-pg., 2016-01-01.
Resumo

Parkinson's Disease (PD) automatic identification in early stages is one of the most challenging medicine-related tasks to date, since a patient may have a similar behaviour to that of a healthy individual at the very early stage of the disease. In this work, we cope with PD automatic identification by means of a Convolutional Neural Network (CNN), which aims at learning features from a signal extracted during the individual's exam by means of a smart pen composed of a series of sensors that can extract information from handwritten dynamics. We have shown CNNs are able to learn relevant information, thus outperforming results obtained from raw data. Also, this work aimed at building a public dataset to be used by researchers worldwide in order to foster PD-related research. (AU)

Processo FAPESP: 15/25739-4 - Estudo de Semântica em Modelos de Aprendizado em Profundidade
Beneficiário:Gustavo Henrique de Rosa
Modalidade de apoio: Bolsas no Brasil - Mestrado
Processo FAPESP: 14/16250-9 - Sobre a otimização de parâmetros em técnicas de aprendizado de máquina: avanços e paradigmas
Beneficiário:João Paulo Papa
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 10/15566-1 - Estudo da aplicação de um modelo matemático da avaliação do padrão de motricidade fina em pacientes com doença de Parkinson através do biosensor smart pen BiSP
Beneficiário:Silke Anna Theresa Weber
Modalidade de apoio: Auxílio à Pesquisa - Regular