Busca avançada
Ano de início
Entree


Constrained intervals and interval spaces

Texto completo
Autor(es):
Lodwick, Weldon A. ; Jenkins, Oscar A.
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: SOFT COMPUTING; v. 17, n. 8, p. 10-pg., 2013-08-01.
Resumo

Constrained intervals, intervals as a mapping from [0, 1] to polynomials of degree one (linear functions) with non-negative slopes, and arithmetic on constrained intervals generate a space that turns out to be a cancellative abelian monoid albeit with a richer set of properties than the usual (standard) space of interval arithmetic. This means that not only do we have the classical embedding as developed by H. Radstrom, S. Markov, and the extension of E. Kaucher but the properties of these polynomials. We study the geometry of the embedding of intervals into a quasilinear space and some of the properties of the mapping of constrained intervals into a space of polynomials. It is assumed that the reader is familiar with the basic notions of interval arithmetic and interval analysis. (AU)

Processo FAPESP: 11/13985-0 - Incerteza generalizada aplicada à otimização
Beneficiário:Geraldo Nunes Silva
Modalidade de apoio: Auxílio à Pesquisa - Pesquisador Visitante - Internacional