Busca avançada
Ano de início
Entree


Manifold Correlation Graph for Semi-Supervised Learning

Texto completo
Autor(es):
Valem, Lucas Pascotti ; Pedronette, Daniel C. G. ; Breve, Fabricio ; Guilherme, Ivan Rizzo ; IEEE
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: 2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN); v. N/A, p. 7-pg., 2018-01-01.
Resumo

Due to the growing availability of unlabeled data and the difficulties in obtaining labeled data, the use of semi-supervised learning approaches becomes even more promising. The capacity of taking into account the dataset structure is of crucial relevance for effectively considering the unlabeled data. In this paper, a novel classifier is proposed through a manifold learning approach. The graph is constructed based on a new hybrid similarity measure which encodes both supervised and unsupervised information. Next, strongly connected components are computed and used to analyze the dataset manifold. The classification is performed through a voting scheme based on primary (labeled) and secondary (unlabeled) voters. An experimental evaluation is conducted, considering various datasets, diverse situations of training/test dataset sizes and comparison with baselines. The proposed method achieved positive results in most of situations. (AU)

Processo FAPESP: 16/05669-4 - Segmentação interativa de imagens utilizando competição e cooperação entre partículas
Beneficiário:Fabricio Aparecido Breve
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 13/08645-0 - Reclassificação e agregação de listas para tarefas de recuperação de imagens
Beneficiário:Daniel Carlos Guimarães Pedronette
Modalidade de apoio: Auxílio à Pesquisa - Jovens Pesquisadores
Processo FAPESP: 17/02091-4 - Seleção e combinação de métodos de aprendizado não supervisionado para recuperação de imagens por conteúdo
Beneficiário:Lucas Pascotti Valem
Modalidade de apoio: Bolsas no Brasil - Mestrado