Busca avançada
Ano de início
Entree


Immune-Inspired Optimization with Autocorrentropy Function for Blind Inversion of Wiener Systems

Texto completo
Autor(es):
Fernandez, Stephanie A. ; Fantinato, Denis G. ; Montalvao, Jugurta ; Attux, Romis ; Silva, Daniel G. ; IEEE
Número total de Autores: 6
Tipo de documento: Artigo Científico
Fonte: 2018 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC); v. N/A, p. 7-pg., 2018-01-01.
Resumo

Blind inversion of nonlinear systems is a complex task that requires some sort of prior information about the source e.g. whether it is composed of independent samples or, particularly in this work, a dependence "signature" which is assumed to be known via the autocorrentropy function. Furthermore, it involves the solution of a nonlinear, multimodal optimization problem to determine the parameters of the inverse model. Thus, we propose a blind method for Wiener systems inversion, which is composed of a correntropy-based criterion in association to the well-known CLONALG immune-inspired optimization metaheuristic. The empirical results validate the methodology for continuous and discrete signals. (AU)

Processo FAPESP: 17/11488-5 - Análise Multivariada da Estrutura Temporal de Dados para Separação Cega de Fontes no Contexto de Misturas Não Lineares e de Múltiplos Conjuntos de Dados
Beneficiário:Denis Gustavo Fantinato
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado