Busca avançada
Ano de início
Entree


Time Series Decomposition Using Spring System Applied on Phase Spaces

Texto completo
Autor(es):
Duarte, Felipe S. L. G. ; Rios, Ricardo A. ; Hruschka, Eduardo R. ; de Mello, Rodrigo F. ; IEEE
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: 2018 7TH BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS); v. N/A, p. 6-pg., 2018-01-01.
Resumo

The incremental collection of data streams has motivated their modeling in attempt to take decisions and optimize operations. Most modeling strategies do not take advantage of data decomposition strategies to separate stochastic from deterministic influences and proceed with their individual analyses. Alternatively, one can model them using the most adequate set of tools: Statistical tools to represent stochastic components, and Dynamical systems to address the deterministic ones. Almost all current decomposition strategies impose biases that make data observations lose their deterministic aspects in the phase space, consequently modifying their basins of attraction and compromising recurrent forecasting. This gap motivated us to propose Spring, an unsupervised approach to decompose time series using spring systems over phase spaces, aiming at preserving the attractor topology. Spring was compared against the state-of-the-art techniques (Fourier, Wavelets, SSA, Lazy, and EMD-RP) using synthetic time series (with and without additive noise), confirming that attractor topologies are preserved. In addition, Spring has shown the best results in our experiments, followed by Lazy. All the other assessed approaches failed in nonlinear scenarios. (AU)

Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:Francisco Louzada Neto
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 14/21636-3 - Decomposição de séries temporais preservando o viés determinístico
Beneficiário:Felipe Simões Lage Gomes Duarte
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 17/16548-6 - Proposta de uma abordagem com garantias teóricas para a detecção de mudanças de conceito em fluxos de dados
Beneficiário:Rodrigo Fernandes de Mello
Modalidade de apoio: Bolsas no Exterior - Pesquisa