Busca avançada
Ano de início
Entree


Self-supervised Dimensionality Reduction with Neural Networks and Pseudo-labeling

Texto completo
Autor(es):
Espadoto, Mateus ; Hirata, Nina ; Telea, Alexandru ; Hurter, C ; Purchase, H ; Braz, J ; Bouatouch, K
Número total de Autores: 7
Tipo de documento: Artigo Científico
Fonte: VISAPP: PROCEEDINGS OF THE 16TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS - VOL. 5: VISAPP; v. N/A, p. 11-pg., 2021-01-01.
Resumo

Dimensionality reduction (DR) is used to explore high-dimensional data in many applications. Deep learning techniques such as autoencoders have been used to provide fast, simple to use, and high-quality DR. However, such methods yield worse visual cluster separation than popular methods such as t-SNE and UMAP. We propose a deep learning DR method called Self-Supervised Network Projection (SSNP) which does DR based on pseudo-labels obtained from clustering. We show that SSNP produces better cluster separation than autoencoders, has out-of-sample, inverse mapping, and clustering capabilities, and is very fast and easy to use. (AU)

Processo FAPESP: 15/22308-2 - Representações intermediárias em Ciência Computacional para descoberta de conhecimento
Beneficiário:Roberto Marcondes Cesar Junior
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 17/25835-9 - Interpretação de imagens e de modelos de aprendizado profundos
Beneficiário:Nina Sumiko Tomita Hirata
Modalidade de apoio: Auxílio à Pesquisa - Parceria para Inovação Tecnológica - PITE