Busca avançada
Ano de início
Entree


Seasonal-Trend decomposition based on Loess plus Machine Learning: Hybrid Forecasting for Monthly Univariate Time Series

Texto completo
Autor(es):
Silvestre, Gabriel Dalforno ; dos Santos, Moises Rocha ; de Carvalho, Andre C. P. L. F. ; IEEE
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: 2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN); v. N/A, p. 7-pg., 2021-01-01.
Resumo

Recent studies have shown that hybrid forecasting models tend to be a powerful tool to forecast univariate time series. However, most of these models are applied to time series of specific domains and do not report general performance analysis for several time series application domains. In this work, we designed a procedure that uses the Seasonal-Trend decomposition based on Loess as a preprocessing step to model the time series components separately using a machine learning algorithm and a seasonal naive forecaster. Finally, we analyze under which conditions our proposed framework can improve a standard machine learning model's predictive performance. Results have shown that our hybrid forecasting framework achieves a significant advantage in comparison to standard machine learning. (AU)

Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:Francisco Louzada Neto
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 19/10012-2 - Meta-aprendizagem aplicada à previsão de séries temporais
Beneficiário:Moisés Rocha dos Santos
Modalidade de apoio: Bolsas no Brasil - Doutorado