Busca avançada
Ano de início
Entree


On the L-infinity structure of Poisson gauge theory

Texto completo
Autor(es):
Abla, O. ; Kupriyanov, V. G. ; Kurkov, M. A.
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: Journal of Physics A-Mathematical and Theoretical; v. 55, n. 38, p. 32-pg., 2022-09-23.
Resumo

The Poisson gauge theory is a semi-classical limit of full non-commutative gauge theory. In this work we construct an L(infinity)(ful)l algebra which governs both the action of gauge symmetries and the dynamics of the Poisson gauge theory. We derive the minimal set of non-vanishing e-brackets and prove that they satisfy the corresponding homotopy relations. On the one hand, it provides new explicit non-trivial examples of L-infinity algebras. On the other hand, it can be used as a starting point for bootstrapping the full non-commutative gauge theory. The first few brackets of such a theory are constructed explicitly in the text. In addition we show that the derivation properties of l-brackets on L-infinity(full) with respect to the truncated product on the exterior algebra are satisfied only for the canonical non-commutativity. In general, L-infinity(full) does not have a structure of P-infinity algebra. (AU)

Processo FAPESP: 21/09313-8 - Álgebras de homotopia, imersões simpléticas e Teoria de Gauge não comutativa
Beneficiário:Vladislav Kupriyanov
Modalidade de apoio: Auxílio à Pesquisa - Regular