Avaliações de Polinômios em Álgebras: Imagens, Identidades, Graduações e Conexões ...
Texto completo | |
Autor(es): |
Centrone, Lucio
;
de Mello, Thiago Castilho
Número total de Autores: 2
|
Tipo de documento: | Artigo Científico |
Fonte: | Journal of Algebra; v. 614, p. 20-pg., 2023-01-15. |
Resumo | |
The aim of this paper is to start the study of images of graded polynomials on full matrix algebras. We work with the matrix algebra Mn(K) over a field K endowed with its canonical Zn- grading (Vasilovsky's grading). We explicitly determine the possibilities for the linear span of the image of a multilinear graded polynomial over the field Q of rational numbers and state an analogue of the L'vov-Kaplansky conjecture about images of multilinear graded polynomials on n x n matrices, where n is a prime number. We confirm such conjecture for polynomials of degree 2 over Mn(K) when K is a quadratically closed field of characteristic zero or greater than n and for polynomials of arbitrary degree over matrices of order 2. We also determine all the possible images of semi-homogeneous graded polynomials evaluated on M2(K). (c) 2022 Elsevier Inc. All rights reserved. (AU) | |
Processo FAPESP: | 18/23690-6 - Estruturas, representações e aplicações de sistemas algébricos |
Beneficiário: | Ivan Chestakov |
Modalidade de apoio: | Auxílio à Pesquisa - Temático |