Busca avançada
Ano de início
Entree


Few-shot Learning for Multi-modal Social Media Event Filtering

Texto completo
Autor(es):
Nascimento, Jose ; Cardenuto, Joao Phillipe ; Yang, Jing ; Rocha, Anderson ; IEEE
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: 2022 IEEE INTERNATIONAL WORKSHOP ON INFORMATION FORENSICS AND SECURITY (WIFS); v. N/A, p. 6-pg., 2022-01-01.
Resumo

Social media has become an important data source for event analysis. When collecting this type of data, most contain no useful information to a target event. Thus, it is essential to filter out those noisy data at the earliest opportunity for a human expert to perform further inspection. Most existing solutions for event filtering rely on fully supervised methods for training. However, in many real-world scenarios, having access to large number of labeled samples is not possible. To deal with a few labeled sample training problem for event filtering, we propose a graph-based few-shot learning pipeline. We also release the Brazilian Protest Dataset to test our method. To the best of our knowledge, this dataset is the first of its kind in event filtering that focuses on protests in multi-modal social media data, with most of the text in Portuguese. Our experimental results show that our proposed pipeline has comparable performance with only a few labeled samples (60) compared with a fully labeled dataset (3100). To facilitate the research community, we make our dataset and code available at https://github.com/jdnascim/7Set-AL. (AU)

Processo FAPESP: 17/12646-3 - Déjà vu: coerência temporal, espacial e de caracterização de dados heterogêneos para análise e interpretação de integridade
Beneficiário:Anderson de Rezende Rocha
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 20/02241-9 - Reconhecimento de padrões e detecção de subeventos de destaque em dados de fontes heterogêneas
Beneficiário:José Dorivaldo Nascimento Souza Júnior
Modalidade de apoio: Bolsas no Brasil - Doutorado Direto
Processo FAPESP: 20/02211-2 - Filtragem e análise de proveniência
Beneficiário:João Phillipe Cardenuto
Modalidade de apoio: Bolsas no Brasil - Doutorado Direto
Processo FAPESP: 19/04053-8 - Reconstrução de eventos a partir de dados visuais heterogêneos
Beneficiário:Jing Yang
Modalidade de apoio: Bolsas no Brasil - Doutorado