Busca avançada
Ano de início
Entree


A systematic review on open-set segmentation

Texto completo
Autor(es):
Nunes, Ian ; Laranjeira, Camila ; Oliveira, Hugo ; dos Santos, Jefersson A.
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: COMPUTERS & GRAPHICS-UK; v. 115, p. 13-pg., 2023-10-01.
Resumo

Open-set semantic segmentation remains yet a challenging task, not only due to the inherent challenges of pixel-wise classification but also the precise segmentation of categories not seen during training. The pursuit of that task is rapidly growing in the Computer Vision community, urging the need to organize the literature. In this paper, we extend our previous work by conducting a more comprehensive systematic mapping of the open-set segmentation literature between January 2001 and January 2023 and proposing a novel taxonomy. Our goal is to provide a broad understanding of current trends for the open-set semantic segmentation (OSS) task defined by existing approaches that may influence future methods. By characterizing methodologies in terms of open-set identification strategies, data inputs, and other relevant aspects, we present a structured view of how researchers are advancing in the field of open-set semantic segmentation. To the best of the authors' knowledge, this is the first systematic review of OSS methods. Moreover, we apply the proposed taxonomy to selected methods for open-set recognition, outlining important similarities and differences of such a closely related field. (c) 2023 Elsevier Ltd. All rights reserved. (AU)

Processo FAPESP: 15/22308-2 - Representações intermediárias em Ciência Computacional para descoberta de conhecimento
Beneficiário:Roberto Marcondes Cesar Junior
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 17/50236-1 - Análise espaço-temporal de imagens de ressonância magnética
Beneficiário:Roberto Marcondes Cesar Junior
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 20/06744-5 - Deep learning e representações intermediárias para análise de imagens pediátricas
Beneficiário:Hugo Neves de Oliveira
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado