Busca avançada
Ano de início
Entree


Dimensionality Reduction and Anomaly Detection Based on Kittler's Taxonomy: Analyzing Water Bodies in Two Dimensional Spaces

Texto completo
Autor(es):
Marinho, Giovanna Carreira ; Marcilio Junior, Wilson Estecio ; Dias, Mauricio Araujo ; Eler, Danilo Medeiros ; Negri, Rogerio Galante ; Casaca, Wallace
Número total de Autores: 6
Tipo de documento: Artigo Científico
Fonte: REMOTE SENSING; v. 15, n. 16, p. 24-pg., 2023-08-01.
Resumo

Dimensionality reduction is one of the most used transformations of data and plays a critical role in maintaining meaningful properties while transforming data from high- to low-dimensional spaces. Previous studies, e.g., on image analysis, comparing data from these two spaces have found that, generally, any study related to anomaly detection can achieve the same or similar results when applied to both dimensional spaces. However, there have been no studies that compare differences in these spaces related to anomaly detection strategy based on Kittler's Taxonomy (ADS-KT). This study aims to investigate the differences between both spaces when dimensionality reduction is associated with ADS-KT while analyzing a satellite image. Our methodology starts applying the pre-processing phase of the ADS-KT to create the high-dimensional space. Next, a dimensionality reduction technique generates the low-dimensional space. Then, we analyze extracted features from both spaces based on visualizations. Finally, machine-learning approaches, in accordance with the ADS-KT, produce results for both spaces. In the results section, metrics assessing transformed data present values close to zero contrasting with the high-dimensional space. Therefore, we conclude that dimensionality reduction directly impacts the application of the ADS-KT. Future work should investigate whether dimensionality reduction impacts the ADS-KT for any set of attributes. (AU)

Processo FAPESP: 16/24185-8 - Detecção, análise e localização de anomalias: um estudo de caso sobre imagens digitais estáticas de sensoriamento remoto aplicado à Cartografia
Beneficiário:Maurício Araújo Dias
Modalidade de apoio: Bolsas no Exterior - Pesquisa
Processo FAPESP: 21/03328-3 - Desenvolvimento de novas metodologias e soluções tecnológicas inteligentes em segmentação de imagens digitais e enfrentamento da COVID-19
Beneficiário:Wallace Correa de Oliveira Casaca
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 20/06477-7 - Análise de séries temporais de imagens de sensoriamento remoto para a detecção de anomalias
Beneficiário:Giovanna Carreira Marinho
Modalidade de apoio: Bolsas no Brasil - Iniciação Científica
Processo FAPESP: 21/01305-6 - Avanços teóricos em detecção de anomalias e construção de sistemas de monitoramento ambiental
Beneficiário:Rogério Galante Negri
Modalidade de apoio: Auxílio à Pesquisa - Regular