Busca avançada
Ano de início
Entree


On the Use of Aggregation Functions for Semi-Supervised Network Embedding

Texto completo
Autor(es):
de Moraes Junior, Marcelo Isaias ; Marcacini, Ricardo Marcondes ; IEEE
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: 2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN; v. N/A, p. 8-pg., 2023-01-01.
Resumo

Network embedding methods map nodes into vector representations, aiming to preserve important properties of relationships between nodes through similarities in a latent vectorspace model. Graph Neural Networks (GNNs) based on aggregate functions have received significant attention among different network embedding methods. In general, the embeddings of a node are recursively generated by aggregating embeddings from neighboring nodes. Aggregation is a crucial step in these methods, and different aggregation functions have been proposed, from simple averaging and max pooling operations to complex functions based on attention mechanisms. However, we note that there is a lack of studies comparing aggregate functions, especially in more practical real-world scenarios involving semi-supervised tasks. This paper introduces a methodology to evaluate different aggregation functions for semi-supervised learning through a model selection strategy guided by a statistical significance analysis framework. We show that Transformers-based aggregation functions are competitive for semi-supervised scenarios and obtain relevant results in different domains. Furthermore, we also discuss scenarios where "less is more", mainly when there are constraints on the availability of computational resources. (AU)

Processo FAPESP: 22/09091-8 - Criminalidade, insegurança e legitimidade: uma abordagem transdisciplinar
Beneficiário:Luis Gustavo Nonato
Modalidade de apoio: Auxílio à Pesquisa - Programa eScience e Data Science - Temático
Processo FAPESP: 19/25010-5 - Representações semanticamente enriquecidas para mineração de textos em português: modelos e aplicações
Beneficiário:Solange Oliveira Rezende
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 19/07665-4 - Centro de Inteligência Artificial
Beneficiário:Fabio Gagliardi Cozman
Modalidade de apoio: Auxílio à Pesquisa - Programa eScience e Data Science - Centros de Pesquisa em Engenharia