Busca avançada
Ano de início
Entree


Chaotic saddles and interior crises in a dissipative nontwist system

Texto completo
Autor(es):
Simile Baroni, R. ; Egydio de Carvalho, R. ; Caldas, I. L. ; Viana, R. L. ; Morrison, P. J.
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: PHYSICAL REVIEW E; v. 107, n. 2, p. 14-pg., 2023-02-24.
Resumo

We consider a dissipative version of the standard nontwist map. Nontwist systems present a robust transport barrier, called the shearless curve, that becomes the shearless attractor when dissipation is introduced. This attractor can be regular or chaotic depending on the control parameters. Chaotic attractors can undergo sudden and qualitative changes as a parameter is varied. These changes are called crises, and at an interior crisis the attractor suddenly expands. Chaotic saddles are nonattracting chaotic sets that play a fundamental role in the dynamics of nonlinear systems; they are responsible for chaotic transients, fractal basin boundaries, and chaotic scattering, and they mediate interior crises. In this work we discuss the creation of chaotic saddles in a dissipative nontwist system and the interior crises they generate. We show how the presence of two saddles increases the transient times and we analyze the phenomenon of crisis induced intermittency. (AU)

Processo FAPESP: 22/04251-7 - Estruturas Fractais em Física de Plasmas
Beneficiário:Iberê Luiz Caldas
Modalidade de apoio: Auxílio à Pesquisa - Pesquisador Visitante - Brasil
Processo FAPESP: 19/07329-4 - Análise da robustez do(a) atrator (curva) "shearless" e da transição quase-periódico caótico
Beneficiário:Ricardo Egydio de Carvalho
Modalidade de apoio: Auxílio à Pesquisa - Regular