Desenvolvimento e aplicação de modelos baseados em difusão fracionária
Estudos estruturais de proteínas associadas à infecção por Enterococcus faecalis
Análise Matemática de Modelos de Quimiotaxia com Reações Biológicas
Texto completo | |
Autor(es): |
de Oliveira, Edmundo Capelas
;
Mainardi, Francesco
;
Vaz, Jayme, Jr.
Número total de Autores: 3
|
Tipo de documento: | Artigo Científico |
Fonte: | MECCANICA; v. 49, n. 9, p. 12-pg., 2014-09-01. |
Resumo | |
We revisit the Kilbas and Saigo functions of the Mittag-Leffler type of a real variable , with two independent real order-parameters. These functions, subjected to the requirement to be completely monotone for , can provide suitable models for the responses and for the corresponding spectral distributions in anomalous (non-Debye) relaxation processes, found e.g. in dielectrics. Our analysis includes as particular cases the classical models referred to as Cole-Cole (the one-parameter Mittag-Leffler function) and to as Kohlrausch (the stretched exponential function). After some remarks on the Kilbas and Saigo functions, we discuss a class of fractional differential equations of order with a characteristic coefficient varying in time according to a power law of exponent , whose solutions will be presented in terms of these functions. We show 2D plots of the solutions and, for a few of them, the corresponding spectral distributions, keeping fixed one of the two order-parameters. The numerical results confirm the complete monotonicity of the solutions via the non-negativity of the spectral distributions, provided that the parameters satisfy the additional condition , assumed by us. (AU) | |
Processo FAPESP: | 13/05927-5 - Desenvolvimento e aplicação de modelos baseados em difusão fracionária |
Beneficiário: | Edmundo Capelas de Oliveira |
Modalidade de apoio: | Auxílio à Pesquisa - Pesquisador Visitante - Internacional |