Busca avançada
Ano de início
Entree


Deep Open-Set Segmentation in Visual Learning

Texto completo
Autor(es):
Nunes, Ian M. ; Poggi, Marcus ; Oliveira, Hugo ; Pereira, Matheus B. ; dos Santos, Jefersson A. ; DeCarvalho, BM ; Goncalves, LMG
Número total de Autores: 7
Tipo de documento: Artigo Científico
Fonte: 2022 35TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI 2022); v. N/A, p. 6-pg., 2022-01-01.
Resumo

Collecting samples that exhaust all possible classes for real-world tasks is usually hard or even impossible due to many different factors. In a realistic/feasible scenario, methods should be aware that the training data is incomplete and not all knowledge is available. In this scenario, in test time, developed methods should be able to identify the unknown samples while correctly executing the proposed task to the known classes. Open-Set Recognition and Semantic Segmentation models emerge to handle this sort of scenario for visual recognition and dense labeling tasks, respectively. In this work, we propose a novel taxonomy aiming to organize the literature and provide an understanding of the theoretical trends that guided the existing approaches which may influence future methods. Moreover, we also provide the first systematic review of open-set semantic segmentation methods. (AU)

Processo FAPESP: 20/06744-5 - Deep learning e representações intermediárias para análise de imagens pediátricas
Beneficiário:Hugo Neves de Oliveira
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 15/22308-2 - Representações intermediárias em Ciência Computacional para descoberta de conhecimento
Beneficiário:Roberto Marcondes Cesar Junior
Modalidade de apoio: Auxílio à Pesquisa - Temático