Busca avançada
Ano de início
Entree


On Disjoint Component Analysis

Texto completo
Autor(es):
Nose-Filho, K. ; Duarte, L. T. ; Romano, J. M. T. ; Tichavsky, P ; BabaieZadeh, M ; Michel, OJJ ; ThirionMoreau, N
Número total de Autores: 7
Tipo de documento: Artigo Científico
Fonte: LATENT VARIABLE ANALYSIS AND SIGNAL SEPARATION (LVA/ICA 2017); v. 10169, p. 10-pg., 2017-01-01.
Resumo

Disjoint Component Analysis (DCA) is a recent blind source separation approach which is based on the assumption that the original sources have disjoint supports. In DCA, the recovery process is carried out by maximizing the disjoint support of the estimated sources. In the present work, we provide sufficient conditions for the separation of both disjoint and quasi-disjoint signals. In addition, we propose an effective DCA criterion to evaluate the level of superposition of the recovered sources. The minimization of such criterion is implemented by an algorithm based on Givens rotations. Finally, simulation results are presented in order to assess the performance of the proposed method. (AU)

Processo FAPESP: 15/07048-4 - Separação Cega de Fontes: Análise por Componentes Esparsas em Misturas Convolutivas e em Misturas Não Lineares
Beneficiário:Kenji Nose Filho
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado