Busca avançada
Ano de início
Entree


Antibacterial and antifungal action of CTAB-containing silica nanoparticles against human pathogens

Texto completo
Autor(es):
Mostrar menos -
da Silva Filho, Pedro Martins ; Mariano, Pedro Higor Rocha ; Andrade, Alexandre Lopes ; Lopes, Jessica Barros Arrais Cruz ; Pinheiro, Aryane de Azevedo ; de Azevedo, Mayara Itala Geronimo ; de Medeiros, Suelen Carneiro ; de Vasconcelos, Mayron Alves ; Fonseca, Said Goncalvez da Cruz ; Grangeiro, Thalles Barbosa ; Franca, Luiz Gonzaga de ; Sousa, Eduardo Henrique Silva ; Teixeira, Edson Holanda ; Longhinotti, Elisane
Número total de Autores: 14
Tipo de documento: Artigo Científico
Fonte: International Journal of Pharmaceutics; v. 641, p. 10-pg., 2023-05-27.
Resumo

New antibiotic agents are urgently needed worldwide to combat the increasing tolerance and resistance of pathogenic fungi and bacteria to current antimicrobials. Here, we looked at the antibacterial and antifungal effects of minor quantities of cetyltrimethylammonium bromide (CTAB), ca. 93.8 mg g-1, on silica nanoparticles (MPSi-CTAB). Our results show that MPSi-CTAB exhibits antimicrobial activity against Methicillin-resistant Staphylococcus aureus strain (S. aureus ATCC 700698) with MIC and MBC of 0.625 mg mL-1 and 1.25 mg mL-1, respectively. Additionally, for Staphylococcus epidermidis ATCC 35984, MPSi-CTAB reduces MIC and MBC by 99.99% of viable cells on the biofilm. Furthermore, when combined with ampicillin or tetracycline, MPSi-CTAB exhibits reduced MIC values by 32- and 16-folds, respectively. MPSi-CTAB also exhibited in vitro anti-fungal activity against reference strains of Candida, with MIC values ranging from 0.0625 to 0.5 mg mL-1. This nanomaterial has low cytotoxicity in human fibroblasts, where over 80% of cells remained viable at 0.31 mg mL-1 of MPSi-CTAB. Finally, we developed a gel formulation of MPSi-CTAB, which inhibited in vitro the growth of Staphylococcus and Candida strains. Overall, these results support the efficacy of MPSi-CTAB with potential application in the treatment and/or prevention of infections caused by methicillin-resistant Staphylococcus and/ or Candida species. (AU)

Processo FAPESP: 19/12885-3 - EMU concedido no processo 2013/07793-6: espectrômetro de ressonância magnética nuclear em estado sólido
Beneficiário:José Fabián Schneider
Modalidade de apoio: Auxílio à Pesquisa - Programa Equipamentos Multiusuários