| Texto completo | |
| Autor(es): |
Fontes, Luiz Renato
;
Mountford, Thomas S.
;
Ungaretti, Daniel
;
Vares, Maria Eulalia
Número total de Autores: 4
|
| Tipo de documento: | Artigo Científico |
| Fonte: | Stochastic Processes and their Applications; v. 161, p. 35-pg., 2023-04-06. |
| Resumo | |
We refine previous results concerning the Renewal Contact Processes. We significantly widen the family of distributions for the interarrival times for which the critical value can be shown to be strictly positive. The result now holds for any dimension d >= 1 and requires only a moment condition slightly stronger than finite first moment. For heavy-tailed interarrival times, we prove a Complete Convergence Theorem and examine when the contact process, conditioned on survival, can be asymptotically predicted knowing the renewal processes. We close with an example of distribution attracted to a stable law of index 1 for which the critical value vanishes.(c) 2023 Published by Elsevier B.V. (AU) | |
| Processo FAPESP: | 20/05555-4 - Processos de disseminação em grafos |
| Beneficiário: | Daniel Ungaretti Borges |
| Modalidade de apoio: | Bolsas no Brasil - Pós-Doutorado |
| Processo FAPESP: | 17/10555-0 - Modelagem estocástica de sistemas interagentes |
| Beneficiário: | Fabio Prates Machado |
| Modalidade de apoio: | Auxílio à Pesquisa - Temático |